

NEHRU MEMORIAL COLLEGE

(AUTONOMOUS) (Nationally Accredited with 'A' Grade) PUTHANAMPATTI - 621007.

PG & RESEARCH DEPARTMENT OF MATHEMATICS

PROGRAMME M.Sc. MATHEMATICS

Courses of Study

Scheme of Examinations

&

Syllabi

(For the students admitted from 2019 – 2020 onwards)

PG & RESEARCH DEPARTMENT OF MATHEMATICS NEHRU MEMORIAL COLLEGE (AUTONOMOUS)

PUTHANAMPATTI - 621007

M.Sc. PROGRAMME IN MATHEMATICS (CBCS)

(For the candidate to be admitted form the year 2019 onwards)

Semester	Courses	No. of Credits
Ι	5 Core courses	23
II	4 Core courses 1 Open Elective course	23
III	3 Core courses 2 Elective courses	22
IV	2 Core courses 2 Elective courses 1 Project	22
TOTAL	20 courses	90 credits

NEHRU MEMORIAL COLLEGE (AUTONOMOUS) Post Graduate Programme Course Structure CBCS (For the candidates admitted from 2019-2020 onwards)

Sem	Subject Code	Course	TITLE	HOURS	CREDIT	Int	Ext	TOTAL
	19PM101	CC-I	Linear Algebra	6	5	25	75	100
	19PM102	CC-II	Real Analysis – I	6	5	25	75	100
	19PM103	6	4	25	75	100		
Ι	19PM104	CC-IV	Equations Integral Equations, Calculus of Variations and Fourier Transforms	6	4	25	75	100
	19PM105	CC-V	Classical Dynamics	6	5	25	75	100
		Т	otal	30	23	125	375	500
	19PM206	CC-VI	Algebra	6	5	25	75	100
	19PM207	CC-VII	Real Analysis – II	6	5	25	75	100
	19PM208	CC-VIII	Topology	6	5	25	75	100
Π	19PM209	CC-IX	Partial Differential Equations	6	4	25	75	100
		OEC Open Elective Course		6	4	25	75	100
	Total				23	125	375	500
	19PM311	CC-X	Complex Analysis	6	5	25	75	100
	19PM312	CC-XI	Differential Geometry	6	4	25	75	100
	19PM313	CC-XII	Measure and Integration	6	5	25	75	100
	19PM314	CEC-I	Elective Course I	6	4	25	75	100
III	19PM315	CEC-II	Elective Course II	6	4	25	75	100
		T	otal	30	22	125	375	500
	19PM416	CC-XIII	Functional Analysis	5	5	25	75	100
	19PM417	CC-XIV	Stochastic Processes	5	4	25	75	100
IV	19PM418	CEC-III	Elective Course III	6	4	25	75	100
	19PM419CEC-IVElective Course IV		6	4	25	75	100	
	19PM420	CC-XV	PROJECT	8	5	25	75	100
	Total				22	125	375	500
		GRAND T		120	90	500	1500	2000

CORE COURSES (CC)

Course	Title of the Courses	Lecture Hours	Tutorial Hours	Credit	Prerequisite (Exposure)
CC-I	Linear Algebra	4	2	5	NIL
CC-II	Real Analysis – I	4	2	5	NIL
CC-III	Ordinary Differential Equations	4	2	4	NIL
CC-IV	Integral Equations, Calculus of Variations and Fourier Transforms	4	2	4	NIL
CC-V	Classical Dynamics	4	2	5	NIL
CC-VI	Algebra	4	2	5	CC-I
CC-VII	Real Analysis – II	4	2	5	CC-II
CC-VIII	Topology	4	2	5	CC-II
CC-IX	Partial Differential Equations	4	2	4	CC-IV
CC-X	Complex Analysis	4	2	5	CC-II & CC-VII
CC-XI	Differential Geometry	4	2	4	CC-II & CC-VII
CC-XII	Measure and Integration	4	2	5	CC-II & CC-VII
CC-XIII	Functional Analysis	3	2	5	CC-II, CC-VIII & CC-XII
CC-XIV	Stochastic Processes	3	2	4	Probability & Statistics UG level
CC-XV	Project Work	-	-	5	CCI-CCXIV

CORE ELEECTIVE COURSES (CEC)

Course	Title of the	Lecture	Tutorial	Credit	Prerequisite
	Courses	Hours	Hours		(Exposure)
CEC-I	Fuzzy	4	2	4	Set Theory
	Mathematics				
CEC-I	Number Theory	4	2	4	NIL
CEC-II	Graph Theory	4	2	4	NIL
CEC-II	Numerical Analysis	4	2	4	NIL
CEC-III	Optimization Techniques	4	2	4	NIL
CEC-III	Probability Theory	4	2	4	NIL
CEC-IV	Coding theory	4	2	4	NIL
CEC-IV	Fluid dynamics	4	2	4	Dynamics (UG level)

OPEN ELEECTIVE COURSES (OEC)

(Courses offered to other Departments)

Course	Title of the Courses	Lecture Hours	Tutorial Hours	Credit	Prerequisite (Exposure)
OEC-1	Mathematical Modeling and Simulation	4	2	4	+2 Level Mathematics
OEC-2	Statistics	4	2	4	+2 Level Mathematics

NEHRU MEMORIAL COLLEGE (AUTONOMOUS) (Nationally Accredited with 'A' Grade) PUTHANAMPATTI - 621007. UG Programme (Mathematics)

(For the candidates admitted from 2019 – 2020 onwards)

Bloom's Taxonomy Based Assessment Pattern

Knowledge Level

K1 – Acquire/Remember; K2 – Understanding; K3 – Apply; K4 – Evaluate; K5 – Analyze

1. Part I, II and III

External/Internal									
Knowledge Level	Section			Marks	Hrs	Total	Passing Mark		
K1-K4	A (Answer all)			$10 \times 2 = 20$					
K3-K5	B (Either or pattern)			$5 \times 5 = 25$	3	75	38		
K1, K3-K5	C (Answer 3 out of 5))		$3 \times 10 = 30$					
Internal									
Com	Maximum Marks	0	Conversion	Hrs	Total	Passing Mark			
C	75		10	3					
C	75		10	3	25	12			
Se	20		5	-					
					Total	100	50		

NEHRU MEMORIAL COLLEGE (AUTONOMOUS) Puthanampatti, Trichy Dist.

SYLLABUS REVISION 2019-2020

Department	: Mathematics
Academic Programme offered	: PG Programme
Year of Implementation	: 2019-2020

OBE Elements for M.Sc Mathematics programme.

Programme Educational objectives (PEO)

PEO 1: Technical Proficiency:

The program gives success in getting employment in different areas, such as Government, public and private sectors.

PEO 2: Professional Growth:

As mathematics is mother of all sciences, its impact is very wide covering all the areas of research and development.

PEO 3: Management Skills:

This program helps each individual in developing personality skills like time management, crisis management, stress management, interviews and working as a team and group.

PEO4: Ethical Skills:

This program makes the individual to understand and appreciate professional ethics, community living and Nation Building initiatives.

Program Outcome (PO)

PO1:Apply knowledge and principle of Mathematics, in all the fields of learning including higher research and the same to the needs of Employer/Institution/Society.

- PO2: Gain analytical skills in the field of Mathematics.
- PO3: Develop the logical thinking skills
- PO3: Understand the concepts of real and complex analysis
- PO4: Use the knowledge of pure and applied mathematics to solve complex mathematical

problems

PO5: Innovate and invent novel ideas to model the real world problems.

PO6: Crack the exams approved by UGC namely CSIR - NET (JRF/Lectureship) and SET.

PROGRAMME SPECIFIC OUTCOME (PSO)

- PSO 1: Connect Mathematics to real life problems in their lives.
- PSO 2: Do intensive research in pure and applied mathematics.
- PSO 3: Analyze problems of industry and society
- PSO 4: Model and provide solutions to scientific and real life situations.
- PSO 5: Prepare for a career in which critical thinking is a central feature.

Course Code & Title	19PM101 : Linear Algebra	Percentage of Revision : 100%			
Class	M.Sc Mathematics	Semester	II		
Cognitive Level	K - 1Acquire/RememberK - 2UnderstandK - 3ApplyK - 4EvaluateK - 5Analyze				
Course Objectives	 Aim of this course is to give the students a thorough know Algebra train the students in problem solvin exams 	-	-		
Employability and Skill Development	Global need	g and Problem			
UNIT	Content		No. of Hours		
Ι	Vector spaces - subspaces - linear combina linear equations - linear dependence and l bases and dimension - maximal linearly inc	15			
Π	Linear transformations, null Spaces, and representation of a linear transformation linear transformations and matrix multipli and isomorphisms - the change of coordina	15			
III	Elementary matrix operations and eleme rank of a matrix and matrix inverses equations - theoretical aspects and com determinants of order 2 - determinants of o determinants -summary - important facts a	15			
IV	Eigen values and eigen vectors - diagon Hamilton Theorem.	15			
V	The Jordan Canonical Form 1 - the Jordan the minimal polynomial.	15			
Reference	Text Books: Stephen H. Friedberg, Arnold J. Insel a Private Limited, New Delhi, 2014. UNIT – I : Ch 1 UNIT – II : Ch 2: (2.1 to 2.5) UNIT – III : Ch 3 and Ch 4: (4.1 to 4.4) UNIT – IV : Ch 5: (5.1 to 5.4) UNIT – V : Ch 7(7.1 to 7.3)	and Lawrence Edition	n, PHI Learning		

	Reference Books:
	1. S. Kumaresan, Linear Algebra, Prentice-Hall of India Ltd, 2000.
	2. K. Hoffman and R. Kunze, Linear Algebra, Second Edition, PHI, New Dalbi 1975
	 Delhi 1975. M.Artin, Algebra, Prentice Hall of India, New Delhi, 1994. Jin Ho Kwak, Linear Algebra, Second Edition, Birkhäuser, 2004. I.N. Herstein, Topics in Algebra, Wiley Eastern Limited, New Delhi, 1975. Gilbert Strang, Linear Algebra and its applications, Cengage Learning 8th Indian edition, 2011 A.R. Rao, P. Bhimashankaram, Linear Algebra, Tata McGraw Hill, 1996. V. Krishnamurthy et al, Introduction to Linear Algebra, East West Press Ltd, 1985
	On completion of the course, students should be able to
Course Outcomes	CO 1: apply the knowledge of bases and dimension of vector spaces and linear transformation.CO2: understand the operations on matrices, matrix of linear transformation and properties of determinant.
	CO3: evaluate the eigen values and the eigen vectors of linear transformations. CO4: demonstrate on applying the Jordan canonical forms to vector spaces.

CO/PO	РО							PSO				
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	М	М	S
CO2	S	S	S	S	S	S	S	S	S	М	S	S
CO3	S	S	S	S	S	S	S	S	S	М	S	S
CO4	S	S	S	S	S	S	S	S	S	М	М	S

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code & Title	19PM102 : Real Analysis-I	Percentage of Re	evision : 40%
Class	M.Sc Mathematics	Semester	Ι
Cognitive Level	K-1Acquire/RememberK-2UnderstandK-3ApplyK-4EvaluateK-5Analyze		
	The Course aims to		
Course Objectives	 understand the basics of metric spa lay the foundation for the subseque complex analysis and functional and 	ent study of advanced r	eal analysis,
Employability and Skill Development	Global need	nd Problem	
UNIT	Content	No. of Hours	
Ι	Sets and Functions, Mathematical Induction sets. Real Number system: Algebraic a Infimum, Supremum, Countable and unc	15	
II	Metric spaces – Definition and examples sets		15
III	Sequences and Series of real numbers monotone sequences – Cauchy criterior Convergent sequences in metric spaces points – Cauchy sequences – Bounded sets	n – limsup, liminf - – limit and cluster	15
IV	Continuous functions – Equivalent Defini Uniform Continuity -Limit of a function – Real Valued function - Compact spaces a Continuous functions on Compact spaces Compact Metric spaces.	– Discontinuities of a and their properties –	15
V	Connectedness : Connected spaces – Com Examples- Baire Category Theorem – Principle.	15	
Reference	 Text Books: 1. R.G. Bartle and D.R. Sherbert, I John Wiley & Sons, 2000. 2. S. Kumaresan, Topology of Met New Delhi, 2005. UNIT – I :Ch 1 and 2 from (1) UNIT – II :Ch 1 from (2) 		

	UNIT – III :Ch 3 from (1) and Ch 2 (§ 2.1 to 2.5 from (2))										
	UNIT – IV :Ch 3, Ch 4 from (2) (§ 3.3 and 3.6 omitted) and Ch 5 from (1)										
	UNIT - V :Ch 5 (§ 5.1) and Ch 6 (§ 6.1, 6.3 and 6.4 (section 6.2, 6.3.16 and										
	6.3.17 omitted) from (2)										
	Reference Books:										
	1. Edward D. Gaughan, Introduction to Analysis, AMS, Indian edition,										
	2010.										
	2. Kenneth A. Ross, Elementary Analysis: The Theory of Calculus, Springer										
	Verlag, 2004.										
	3. M.H. Protter, C.B. Morrey, A First Course in Real Analysis, 2nd Edition,										
	Springer Verlag, 1991.										
	4. S.K. Berberian, A First course in Real Analysis, Springer Verlag, 1994.										
	5. Charles Chapman Pugh, Real Mathematical Analysis, Springer Verlag,										
	2002.										
	6. R.P. Boas, A primer of real functions, Mathematical Association of										
	America, 1966.										
	7. Tom M. Apostol, Mathematical Analysis 2 edn, Narosa, New Delhi,										
	1985.										
	8. Walter Rudin, Principles of Mathematical Analysis, Third Edition,										
	Mcgraw Hill, 1976										
	9. N.L. Carothers, Real Analysis, Cambridge University Press, South Asian										
	Edition, 2000.										
	On completion of the course, students should be able to										
	CO1: describe the concepts of sets and functions, metric spaces, continuity and										
	connectedness.										
Course	CO2: demonstrate on sequences and series.										
Outcomes	CO3: demonstrate on applying Baire Category Theorem, Banach Contraction										
	Principle .										
	CO4: analyze Cauchy sequences, complete metric spaces and connected metric										
	spaces.										

CO/PO		РО							PSO			
	1	2	3	4	5	6	7	1	2	3	4	5
C01	S	S	S	S	S	М	S	S	S	М	М	S
CO2	S	S	S	S	S	М	S	S	S	М	М	S

CO3	S	М	S	S	М	S	S	S	S	S	М	S
CO4	S	S	S	S	S	М	S	S	S	М	М	S

Strongly Correlating(S) Moderately Correlating (M) Weakly Correlating (W) No Correlation (N)

3 marks 2 marks

--1 mark

-0 mark

Course Code & Title	19PM103 : Ordinary	ns	
Class	M.Sc Mathematics	Semester	Ī
Cognitive Level	K-1Acquire/RememberK-2UnderstandK-3ApplyK-4EvaluateK-5Analyze		
Course Objectives	 The Course aims to gain the knowledge of the method equations, special functions and a equations. 	-	•
Employability and Skill Development	Global need	ng and Problem	
UNIT	Content	No. of Hours	
I	Second order linear equations and power general solution of the homogeneous e variation of parameters – A review of solution of first order equations – Ordinat	of	
II	Power series solutions and special funct Regular singular points	ions singular points	- 15
III	Some special functions of Mathematic polynomials – Properties of Legendre functions – The Gamma functions – functions.	polynomials – Bess	sel
IV	System of first order equations: Homogeneous linear system with const method of successive approximation – Pi	ant coefficient – T	– 15 he
V	Non - linear equations: Autonomous sys and its phenomena – Types of critical Critical points and stability for linear Liapunov's direct method – Simple crit Linear systems.	_ by	
	Text Books: G.F Simmons, Differential equations w TMH, New Delhi 1984.	vith Applications a	nd Historical Notes,
	UNIT – I :Ch 3(§15,16,19) & Ch 5(§25, UNIT – II : Ch 5(§28 – 31)	,26,27)	

	UNIT – III : Ch 6(§32 – 35)
	UNIT – IV : Ch 7(§37 & 38) Ch 11(§55 & 56)
	UNIT – V : Ch 8($\S40 - 44$)
	Reference Books:
Reference	
	1. M.E. Taylor, Introduction to Differential Equations, AMS Indian Edition,
	2011.
	2. M. Braun, Differential Equations and Their Applications, Springer, 1992.
	3. Boyce and DiPrima, Elementary Differential Equations and Boundary
	Value Problems, 7 th Edn, John Wiley, 2001.
	4. S. Deo et al, A textbook of Differential Equations, McGraw Hill, 2002.
	5. Lawrence Perko, Differential Equations and Dynamical Systems,
	Springer, 2006.
	6. E.A. Coddington and N. Levinson, Theory of Ordinary Differential
	Equations, McGraw Hill, 1955.
	7. Tyn Myint-U, Ordinary Differential Equations, North-Holland, New
	York, 1978.
	8. W.T Reid, ordinary Differential equations, John Wiley and sons, New
	York, 1971.
	On completion of the course, students should be able to
G	CO1:describe the methods of solving first and second order ODE and non linear
Course	autonomous system of ODE.
Outcomes	CO2: understand the special functions of Mathematical Physics and the concept
	of stability and critical points of linear system of equations.
	CO3: evaluate the power series solution of ODE.
	CO4: demonstrate on applying Picard's theorem to find the solution of ODE's.

CO/PO		РО								PSO		
	1	2	3	4	5	6	7	1	2	3	4	5
C01	S	S	S	М	S	S	S	S	S	М	S	S
CO2	S	S	S	М	S	S	S	S	S	М	S	S
СОЗ	S	S	S	М	S	S	S	S	М	М	S	S

CO4	S	S	S	Μ	S	S	S	S	М	М	S	S	
]
Strongly (Correla	ting(S)			-	3 ma	arks						
Moderate	ly Corr	elating	(M)		- 2 marks								
Weakly Correlating (W)					- 1 mark								
No Correl	lation (1	N)			-	0 m	ark						

Course Code & Title	19PM104: Integral Equation, Calculus	of Variations and Fo	ourier Transforms					
Class	M.Sc Mathematics	Semester	Ι					
Cognitive Level	K-1Acquire/RememberK-2UnderstandK-3ApplyK-4EvaluateK-5Analyze							
Course Objectives	 The Course aims to introduce the concepts of integral integral equations, method of s problems with fixed boundaries boundaries and Fourier Transform 	successive approxin , variational prob	nations, variational lems with moving					
Employability and Skill Development	Global need	g and Problem						
UNIT	Content	No. of Hours						
Ι	Linear Integral Equations: Definition, Re Special kind of Kernels – eigen values a Convolution Integral – The inner and se functions –reduction to a system of a examples – Fredholm alternative – exam method.	 o 						
II	Method of Successive Approximations: Examples – Volterra Integral Equation results about the resolvent kernel – Theory: The method of Solution of Fra First Theorem – Second Theorem – Third only).	– Examples – Som Classical Fredholn edholm - Fredholm	e n 's					
III	Variational Problems with Fixed Boundaries: The concept of variation and its properties - Euler's equations - variational problems for functionals - functionals dependent on higher order derivatives - functions dependent on functions of several independent variables - variational problems in parametric15							
IV	form. Variational Problems with moving boundaries: Functional of 15 the form $I[y(x)] = \int_{x_1}^{x_2} F(x, y, y') dx$ - Variational Problem with a movable boundary for a functional dependent on two							
	functions – one sided variations – suffici extremum field of extremals : – Jacobi co	ient conditions for a	n					

	function – Legendre condition.								
V	Fourier Transform: Fourier sine and cosine transforms-	15							
	properties, convolution-solving integral equations-finite								
	Fourier transform-finite Fourier sine and cosine transform-								
	Fourier integral theorem Parseval Identity. Hankel transform:								
	definition-Inverse formula-linearity property-Hankel								
	transform of the derivatives of the function-Hankel transform								
	of differential operation.								
	Text Books:								
	1. Ram.P.Kanwal, Linear integral equations theory Academic press 1971.	and technique,							
	 Academic press 1971. A.S. Gupta, Calculus of Variations with Applications, Prentice – Hall of India Pvt. Ltd., New Delhi, 1997. 								
	 A.R. Vasistha, R.K. Gupta, Integral transforms, Krishna Prakashan Media Pvt. Ltd., India 2002. 								
	UNIT-I: Ch1 and 2 of (1)								
Reference	UNIT-II:Ch3 and 4 of (1)								
	UNIT-III:Ch1[1.1-1.6] of (2)								
	UNIT-IV:Ch2[2.1-2.3] & ch3[3.1-3.4] of (2)								
	UNIT-V:Ch7 and 9 of (3)								
	Reference Books:								
	 F.G. Tricomi,, Integral Equations, Dover Publications Inc, New You 1897. Bruce Van Brunt, Calculus of Variations, Springer, 2006. L.Elsgolts, Differential equations and the calculus of variations, I Publishers, Moscow 1970. 								
Course	On completion of the course, students should be able to								
Outcomes	CO1: solve the linear integral equations.								
	CO2: find the solutions of Volterra and Fredholm integral equations.								
	CO3: demonstrate on variational problems on moving boundaries	es and fixed							
	CO4: find the Fourier transform and Hankel transform of variou	s functions.							

CO/PO		РО								PSO		
	1	2	3	4	5	6	7	1	2	3	4	5
C01	S	S	S	М	S	S	S	S	S	М	М	S
CO2	S	S	S	М	S	S	S	S	S	М	М	S
СОЗ	S	S	S	М	S	S	S	S	S	М	S	S
CO4	S	S	S	М	S	S	S	S	S	М	S	S

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code & Title	19PM105 : Classical Dynamics							
Class	M.Sc Mathematics	Semester	Ι					
Cognitive Level	K-1Acquire/RememberK-2UnderstandK-3ApplyK-4EvaluateK-5Analyze							
Course Objectives	 The Course aims to gain a detailed knowledge of the mechanical system of particles. learn the applications of Lagrange's and Hamilton's equations . 							
Employability and Skill Development	Global need	rning and Problem						
UNIT	Content		No. of Hours					
Ι	Introductory concepts: Mechanical system Coordinates Constraints – Virtual Work – Momentum.	15						
II	Lagrange's equations: Derivations of Lagrange's Equations –15Examples – Integrals of Motion.15							
III	Hamilton's equations: Hamilton's Principle – Hamilton's Equations.							
IV	Hamilton – Jacobi theory: Hamilton's Principle function –15Hamilton-Jacobi Equation.15							
V	Canonical transformations: Differential fo Functions – Lagrange and Poisson Bracke		ating 15					

	Text Book:
	Donald T. Greenwood, Classical Dynamics, Dover Publication. New York.
	UNIT- I: Ch1 (§1.1 – 1.5)
	UNIT- II: Ch2 (§2.1 – 2.3)
Reference	UNIT- III: Ch4 (§4.1 - 4.2)
Kelerence	UNIT- IV: Ch5 (§5.1-5.2)
	UNIT -V: Ch6 (§6.1-6.3).
	Reference Books:
	1. Goldstein, H., Classical Mechanics. Addison Wesley Press, Inc., 1950
	2. Synge, J.L. and Griffith, B.A., <i>Principles of Mechanics</i> . Third Edition., McGraw-Hill company,1959
	On completion of the course, students should be able to
	CO 1: understand the 3N-Coordinate system made up of N-Spatial
Course	coordinates, N-velocity coordinates and N-acceleration coordinates
Outcomes	CO 2: analyse the motion of mechanical systems with constraints using Lagranian description
	CO 3: apply Hamilton's principle and gain proficiency in solving equations of motions
	CO 4: use the Hamilton-Jacobi theory in solving equations of motions

CO/PO	РО						PSO					
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	S	М	S	М	S	S	S	М	М	S
CO2	S	S	S	М	S	М	S	S	S	М	М	S
CO3	S	М	S	М	S	М	S	S	S	М	М	S
CO4	S	М	S	М	S	М	S	S	S	М	S	S

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code & Title	19PM206 : Algebra						
Class	M.Sc Mathematics	Semester	п				
Cognitive Level	K-1Acquire/RememberK-2UnderstandK-3ApplyK-4EvaluateK-5Analyze						
Course Objectives	 The Course aims to gain the .knowledge of advanced concepts of group theory and ring theory. learn extension fields, elements of Galois theory and various forms of linear transformations 						
Employability and Skill Development	Global need	ing and Problem					
UNIT	Content		No. of Hours				
Ι	Group theory: Another counting principle theorem, Direct Products, Finite Abelian	15					
П	Ring theory: Euclidean Rings, A particula Polynomial Rings, Polynomials over the I Polynomial Rings over commutative Ring	15					
III	Vector spaces and modules: Dual spaces, Modules.	ces, 15					
IV	Fields: Extension Fields, Roots of poly Roots, The Elements of Galois's theory.	out 15					
V	Linear transformations: Characteristic Canonical Forms: Triangular Form, Nilpo Hermitian, Unitary and Normal Transform	otent Transformatio					

	Text Book:						
	I. N. Herstein, Topics in Algebra, second Edition John Wiley and sons Pvt. Ltd., 1975.						
	UNIT- I : Ch2 (§2.11 - 2.14)						
	UNIT -II : Ch3 (§3.7 - 3.11)						
	UNIT- III: Ch4 (§4.3 - 4.5)						
Reference	UNIT- IV: Ch5 (§5.1, 5.3, 5.5& 5.6)						
Reference	UNIT- V : Ch6 (§6.2, 6.3, 6.4 & 6.10).						
	Reference Books:						
	1) Serge Lang, Algebra, Revised Third Edition, Springer Verlag, 2002.						
	 Kenneth Hoffman and Ray Kunze, Linear Algebra, Second Edition ,Prentice-Hall of India pvt.Ltd.,New Delhi,1975. David S.Dummit and Richard M.Foote, Abstract Algebra, Wiley and Sons. Third Edition, 2004. 						
	On completion of the course, students should be able to						
	CO 1: understand Sylow's theorem and its applications and Galois theory and its						
Course	applications						
Outcomes	CO 2: apply suitable methods to find the roots of the polynomials						
	CO 3: analyze linear transformations.						
	CO 4: evaluate characteristic roots of the matrix						

CO/PO	РО								PSO			
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	S	W	S	W	S	М	М	М	М	S
CO2	S	S	S	W	S	W	S	М	М	М	М	S
CO3	S	М	S	W	S	W	S	М	М	М	М	S
CO4	S	М	S	W	S	W	S	М	S	М	S	S

S

Course Code & Title	19PM207: Real Analysis-II	Percentage of 80%	
Class	M.sc-Mathematics	Semester	II
Cognitive Level	 K1 – Acquire/Remember K2 – Understand K3 – Apply K4 – Evaluate K5 – Analyze 		
Course Objectives	 The Course aims to provide the knowledge of differentiation of series of functions of several variables. 	single variable, s	equences and
Employability and Skill Development	Global need	Participative lear Problem solving	ming and
UNIT	Content		No. of
			Hours
Ι	Differentiation of single variable: Derivatives – The Local extrema – Rolle's theorem – Mean Value The Taylor's formula – Derivatives of vector valued fun Functions of Bounded variation and rectifiable curv variation –Functions of bounded variation – Equiva Change of parameter	eorem – actions – res – Total	15
Π	Riemann-Stieltjes integral: Definition – linear pr integral – Necessary conditions for the exi fundamental theorem of Integral calculus - Mean V for integrals – Second fundamental theorem of Int Change of variable in a Riemann integral – Second Theorem for Riemann Integrals	stence - First Value Theorems regral calculus -	15
III	Sequence and series of functions – Point wise Uniform convergence – Uniform convergence an Uniform convergence and Differentiation - Suffic for uniform convergence of a series	nd integration –	15
IV	Functions of Severable variables – Directional de derivative – Jacobian – Chain rule –Mean Val Taylor's formula.		15
V	Inverse function theorem – Implicit function theorem problems with side conditions	m – Extremum	15
Reference	Text Book: Tom M. Apostol, Mathematical Analysis Secon House, New Delhi, 1985. UNIT –I :Ch 5 and 6 UNIT –II : Ch 7 (§7.1 -7.22)	nd Edition, Naros	sa Publishing

	UNIT-III : Ch 9(§ 9.1 - 9.11) and (§9.14 -9.18)									
	UNIT–IV : Ch 12									
	UNIT – V :Ch 13									
	Reference Books:									
	 M.H. Protter, C.B. Morrey, A First Course in Real Analysis, 2nd Edition, Springer Verlag International Edition, 1991. Torrence Tao, Mathematical Analysis, Vol I & II, Hindustan Book Agency, 2006. 									
	3. J.E. Marsden, A.J. Tromba, A.Weinstein, Basic multivariable calculus, Springer Verlag, 1993.									
	4. Robert T. Seeley, Calculas of Several Variables, Scott, Foresman and Co, 1970.									
	 T.W. Korner, A Companion to Analysis, AMS Indian edition, 2011. N.L. Carothers, Real Analysis, Cambridge University Press, South Asian 									
	 N.L. Caroniers, Real Analysis, Camoridge University Press, South Asian Edition, 2000 S. Kumaresan, A Course in Differential Geometry and Lie groups, Hindustan Book Agency, 2002 Walter Rudin, Principles of Mathematical Analysis, Third Edition, Mcgraw Hill, 1976. Tom Apostol, Calculas II, Mcgraw Hill, 1983 									
	9. Tom Apostol, Calculas II, Megraw Tim, 1985									
Course Outcomes	 On completion of the course, students should be able to CO1:know differentiation of single variables. CO2: acquire the knowledge of Riemann-Stieltjes integrals.and inverse function theorem CO3: demonstrate on the convergence and uniform convergence of sequence and series of functions CO4:evaluate directional derivative, total derivative, Jacobian of functions of several variables. 									

CO/PO	РО									PSO		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	М	S	S	S	М	S	М	М	М	М	S
CO2	S	М	S	S	S	М	S	М	М	М	М	S
CO3	S	М	S	S	S	М	S	М	М	М	М	S
CO4	S	S	S	S	S	S	S	М	М	М	М	S

-

Strongly Correlating(S)

Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code & Title	19PM208 : Topology										
Class	M.Sc Mathematics	Semester	п								
Cognitive Level	K-1Acquire/RememberK-2UnderstandK-3ApplyK-4EvaluateK-5Analyze										
Course Objectives	 The Course aims to enable the students to learn abo their properties in terms of cont 										
Employability and Skill Development	Global need	Participative lean solving	rning and Problem								

UNIT	Content	No. of Hours
I	Topological spaces - Basis for a topology - The order topology - The product topology on $X \times Y$ - The subspace topology - closed sets and limit points.	15
II	Continuous functions - the product topology - The metric topology.	15
III	Connectedness: connected subspaces of the Real line - components and local connectedness	15
IV	Compactness: compact subspaces of the Real line - Limit Point Compactness - Local Compactness.	15
V	The Countability Axioms - The Separation Axioms – Normal Spaces – The Urysohn Lemma – The Urysohn metrization theorem – The Tietz extension theorem.	15
Reference	Text Book: James R. Munkres, Topology (2^{nd} edition), Pearson Education Delhi – 2002 (3^{rd} Indian Reprint) UNIT –I : Ch 2 ($\$12 - 17$) UNIT–II: Ch 2 ($\$18 - 21$) UNIT–III: Ch 3 ($\$23 - 25$)	n Pvt. Ltd., New

	UNIT–IV : Ch 3 (§26 – 28)
	UNIT–V :Ch 4 (§30–35)
	Reference Books:
	 G.F. Simmons, Introduction to topology and Modern Analysis M.C.Graw Hill company, 1963.
	2. James Dugundji, Topology, Prentice Hall of India Pvt. Ltd., 1975.
	On completion of the course, students should be able to
	CO1: develop their abstract thinking skills
	CO2: provide precise definitions and appropriate examples and counter examples
Course	of fundamental concepts in general topology.
Outcomes	CO3: acquire knowledge about various types of topological spaces and their properties
	CO4: appreciate the beauty of the mathematical results like UryZohn's Lemma
	and understand the dynamics of the proof techniques.

CO/PO	РО								PSO			
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	S	S	М	М	S	S	S	М	S	S
CO2	S	S	S	S	М	М	S	S	S	М	S	S
CO3	S	S	S	S	М	М	S	S	S	М	S	S
CO4	S	S	S	S	М	М	S	S	S	М	S	S

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code	10DM200 . D	:	·							
& Title	19PM209 : Partial D	Interential Equat	ions							
Class	M.Sc Mathematics	Semester	П							
Cognitive Level	K - 1Acquire/RememberK - 2UnderstandK - 3ApplyK - 4EvaluateK - 5Analyze									
Course Objectives	 The Course aims to help the students to understand linear and non linear partial equations and solving them using Charpit's and Jacobi's methods, methods of separation of variables and by method of integral transforms. the study of Laplace equation, wave equation and diffusion equation and their classifications. 									
Employability and Skill Development	Global need	rning and Problem								
UNIT	Content		No. of Hours							
I	First Order PDE – Curves and Surfaces – Order PDE – Classification of Integrals – the First order – Paffian Differential Equat Systems – Charpit's Method – Jacobi's M	ole								
II	Integral Surfaces Through a Given C Equations – Non-linear First order PDE.	urve – Quasi-l	linear 15							
III	Second order PDE:Genesis of second order PDE –15Classification of second order PDE – One-Dimensional waveEquation – Vibrations of an Infinite string – Vibrations of a Semi-infinite string – Vibrations of a string of Finite length (Method of Separation of variables).15									
IV	Laplace's Equation: Boundary Value Pr and Minimum principles –The Cauch Dirichlet problem for the Upper Half Pl Problem for the Upper Half Plane – T problem for a circle – The Dirichlet Ex circle – The Neumann problem for a cir problem for a Rectangle – The Harnack's Equation – Green's Function.	The mann terior for a ichlet								
V	Heat Conduction Problem – Heat Conduction Problem – Heat Conduction Finite Rod case – – Wave Equation – Heat Conduction Equa	- Duhamel's prin								

Reference	Text Book:T. Amarnath, an Elementary Course in Partial Differential Equations, Narosa1997.UNIT I:Ch 1 (§1.1-1.8)UNIT II: Ch 1 (§1.9-1.11)UNIT III: Ch 2 (§2.1-2.3.5) except 2.3.4.UNIT IV: Ch 2 (§2.4 - 2.4.11)										
	UNIT V: Ch 2 (§2.5 – 2.6.2).										
	Reference Book: I.C.Evens, Partial Differential Equations, Graduate studies in Mathematics, Vol 19, AMS, 1998.										
Course Outcomes	 On completion of the course, students should be able to CO1: recollect the first order and second order partial differential equations and their solution. CO2: understand the linear partial differential equations with constant and variable coefficients, boundary value problems and application of calculus of variations. CO3: gain good knowledge in applying Charpit's and Jacobi's methods, method of appendix of variables and the method of integrals to obtain 										
	 method of separation of variables and the method of integrals to obtain solutions of partial differential equations. CO4: demonstrate on the canonical forms of second order PDEs and bounded value problems by Dirichlet and Neumann. 										

CO/PO	РО								PSO			
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	М	S	S	М	S	S	S	М	S	М	S
CO2	S	М	S	S	М	S	S	S	М	S	М	S
CO3	S	М	S	S	М	S	S	S	М	S	М	S
CO4	S	М	S	S	М	S	S	S	М	S	М	S

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code & Title	19PM311: Complex Analysis	Percentage of I	Revision :90%					
Class	M.Sc Mathematics	Semester	III					
Cognitive Level	 K1 – Acquire/Remember K2 – Understand K3 – Apply K4 – Evaluate K5 – Analyze 							
Course Objectives	 The Course aims to provide a transition from upostgraduate advanced topics enable the learners to understand give a deeper understanding in tand maximum Principle. 	and evaluate the defin	ite integrals.					
Employability and Skill Development	Global need Participative learning and Prob solving							
UNIT	Content	I	No. of Hours					
Ι	The real numbers - The field of com complex plane – Polar representation numbers - Lines and half planes in the extended plane and its spherical represent							
II	Power series- Analytic functions - A mapping – Mobius Transformation		15					
III	Riemann-Stieltjes integrals - Power series representation of analytic functions - Zeros of an analytic function - The index of a closed curve - Cauchy's Theorem and Integral Formula - The homotopic version of Cauchy's Theorem and simple connectivity – Counting zeros - The Open Mapping Theorem-							
IV	Goursat's TheoremClassification of singularities - Residues - The Argument15Principle15							
V	The Maximum Principle - Schwarz's Lemma - Convex 15 functions and Hadamard's Three Circles Theorem- Phragmen- Lindelof Theorem 15							
Reference	Text Book: J.B. Conway, Functions of One Complex UNIT–I :Ch 1 UNIT–II :Ch 3 UNIT–III :Ch 4 UNIT–IV :Ch 5 UNIT–V :Ch 6 Reference Books:	x Variable, Narosa, 2 e	dn., 1991					

	1 Dat I Neuman D.I. Compley Analysis Springer Verley New York
	1. Bak, J., Newman, D.J., Complex Analysis, Springer-Verlag, New York,
	1997.
	2. L.S. Hahn and B. Epstein, Classical Complex analysis, Jones and Barlett
	Student Edition, 2011.
	3. R. Priestely, Introduction to Complex Analysis, Oxford India, 2008.
	4. Lars V. Ahlfors, Complex Analysis, Third Ed. McGraw-Hill Book
	Company, Tokyo, 1979.
	5. Theodore W. Gamelin, Complex Analysis, Springer Verlag, 2001.
	6. Donald Sarason, Notes on Complex Function theory, Hindustan Book
	Agency, 1994.
	7. V. Karunakaran, Complex Analysis 2 edn, Narosa, New Delhi, 2005.
	8. S. Ponnusamy and H. Silverman, Complex Variables with applications,
	Birkhauser, 2006.
	9. R.V. Churchill & J.W. Brown, Complex Variables and applications,
	McGraw-Hill, 1990
	On completion of the course, students should be able to
	CO1: acquire the knowledge of analytic functions and Mobius transformation.
Course	CO2: understand the concept of complex integration.
Outcomes	CO3: demonstrate on Cauchy theorems and open mapping theorem.
0	CO4: classify the singularities and evaluate the residue

CO/PO	РО							-	PSO	-		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	М	S	М	М	S	S	S	М	S	М	S
CO2	S	М	S	М	М	S	S	S	М	S	М	S
CO3	S	М	S	М	М	S	S	S	М	S	М	S
CO4	S	М	S	М	М	S	S	S	М	S	М	S

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code & Title	19PM312: Differential Geometry	Percentage of Revision : 90%					
Class	M.Sc Mathematics	Ш					
Cognitive Level	 K1 – Acquire/Remember K2 – Understand K3 – Apply K4 – Evaluate K5 – Analyze 						
Course Objectives	 Aim of this course is to make the student to learn about tangent spaces, surfaces, Gauss map, Geodesics on surfaces and curvature of plane curves. 						
Employability and Skill Development	Global need	ing and Problem					
UNIT	Content	No. of Hours					
Ι	Graphs and Level sets - Vector fields - T	15					
II	Surfaces –vector fields on surfaces.	15					
III	Gauss map – geodesics	15					
IV	Parallel Transport - Weingarten map	15					
V	Curvature of plane curves - arc length an Curvature of surface.	15					
Reference	 Text Book Elementary topics in Differential Geomed Mathematics, Springer- Verlag, 1979. UNIT-I : Ch 1 to 3. UNIT-II : Ch 4 and 5. UNIT-III : Ch 6 and 7. UNIT-IV : Ch 8 and 9. UNIT-V : Ch 10 to 12. Reference Books: S. Kumaresan, A Course in Differential Geomediates and Readings in Mathematics 2. Struik, D.T. Lectures on Classic Wesley, Mass. 1950. Kobayashi S. and Nomizu. K. Interscience Publishers, 1963. Wihelm Klingenberg: A course 	ferential Geometry 22 - Hindustan Bool cal Differential Geo Foundations of Dif	and Lie groups, Texts k Agency, 2002. metry, Addison - ferential Geometry				

	 Texts in Mathematics, Springer Verlag, 1978. 5. T.J. Willmore, An Introduction to Differential Geometry, Oxford University Press,(17th Impression) New Delhi 2002. (Indian Print).
Course Outcomes	On completion of the course the student will be able to CO1: understand the concept of Graphs and Level sets-Vector fields CO2: analyze surfaces and Vector field on surfaces CO3: understand Gauss map-Geodesics. CO4: apply Parallel Transport and Weingarten map.

CO/PO	РО						-	PSO	-			
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	М	М	М	М	S	S	М	М	S	S
CO2	S	S	М	М	S	М	S	S	S	М	S	S
CO3	S	S	М	М	М	S	S	S	М	М	М	S
CO4	S	S	М	М	М	S	S	S	М	М	М	S

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code & Title	19PM313: Measure Theory and Integration							
Class	M.Sc Mathematics	Semester	III					
Cognitive Level	K1 – Acquire/RememberK2 – UnderstandK3 – ApplyK4 – EvaluateK5 – Analyze							
Course Objectives	 Aim of this course is to introduce the concepts of measure on real line, integration of non-negative functions, abstract measure spaces, L^p Spaces, Signed measure. 							
Employability and Skill Development	Global need Participative learning and Problem solving							
UNIT	Content	No. of Hours						
Ι	Measure on real line – Lebesgue oute sets – Regularity measurable Function measurability.							
II	Integration of non-negative function integration of series, Riemann and Lebe	, 15						
III	Abstract measure spaces – measures and outer measure, 15 completion of a measure, measure spaces, integration with respect to a measure.							
IV	L^{P} spaces – Convex functions, Jenson's inequality, inequalities 15 of Holder and Minkowski completeness of $L^{P}(\mu)$							
V	Signed measure – Hahn decomposition measurability in a15product spaces, Fubini's Theorem.							
Reference	Text Book: De Barra, Measure Theory and Integration, New Age International PVT Limited UNIT-I: Ch 2 (§2.1-2.5) UNIT-II: Ch 3 (§3.1-3.4) UNIT-III: Ch 5 (§5.1-5.6) UNIT-IV: Ch 6 § (6.1-6.5) UNIT-V: Ch 8 (§8.1 & 8.2) & Ch 10(§10.1 7 10.2) Reference Books: 1. M.E.Munroo addition- Measure and Integration, Wesley, second Edition publishing company 1971. 2. H.L.Royden, Real Analysis, PHI, Third Edition 1989. 3. R.G. Bartle and D.R. Sherbert, Introduction to Real Analysis 3rd Edn,							

	John Wiley & Sons, 2000.					
	On completion of the course, students should be able to					
Course	CO 1: acquire the concept of Lebesgue measure, measurable set.					
Outcomes	CO 2: understand the concept of integration of non negative functions.					
	CO 3: demonstrate on Jenson's inequality and Hahn decomposition theorem					
	and					
	Fubini's theorem.					
	CO 4: analyze the properties of L^p spaces.					

CO/PO	РО								PSO			
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	S	S	М	М	S	М	М	М	S	S
CO2	S	S	S	S	М	М	S	М	М	М	S	S
CO3	S	S	S	S	М	М	S	М	М	М	S	S
CO4	S	S	S	S	М	М	S	М	М	М	М	S

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code & Title	19PM416 : Functional Analysis	Percentage	of Revision : 80%				
Class	M.sc-Mathematics	Semester	IV				
Cognitive Level	 K1 – Acquire/Remember K2 – Understand K3 – Apply K4 – Evaluate K5 – Analyze 						
Course Objectives	 The Course aims to learn the concepts of normed Spa operator, linear operator on Hilber 	-	-				
Employability and Skill Development	Global need	ning and Problem					
UNIT	Content	Content					
Ι	Normed Spaces: Examples of Normed Sp dimensional Normed Spaces- Banach Spa		13				
II	Inner Product Spaces- Danaen Spaces- Danaen Spaces- Orthogonality- Orthogonal Complements in Infinite Dimensions	ases 13					
III	Linear Operator: Continuous linear trans normal of a Bounded Linear Operator – ' and Dual Spaces- Inverses of Operators	() 12					
IV	Linear Operator on Hilbert Spaces: The a operator- Normal, Self-adjoint and Unitar Spectrum of an Operator- Positive operat						
V	Compact Operators: Compact Operators- Compact Operators- Self-adjoint Compact						
Reference	Compact Operators.Text Book:Bryan P.Rynne and Martin A. Youngson, " Linear Functional Analysis", Springer-Verlag, 2000. Unit I: Ch 2 (2.1-2.3) Unit II: Ch 3 (3.1-3.4) Unit II: Ch 4 (4.1-4.4) Unit III: Ch 4 (4.1-4.4) Unit IV: Ch5 (5.1-5.4) Unit IV: Ch 6 (6.1-6.3)						
	 Reference Books: 1. Bela Bollobas, "Linear Analysis a Mathematical textbooks, Cambrid 2. G. F. Simmons, "Introduction to McGraw-Hill, 1963. 3. B.V.Limaye, "Functional Analysis" 	lge University Pre Topology and Mo	ess, 1990. dern Analysis",				

	 2ndedition, 1985. 4. M. Thamban Nair, "Functional Analysis: A first course", Prentice hall of India, 2002. 5. K. Yosida, "Functional Analysis", Springers-Verlag, 1974. 6. E. Kreyszig, "introductory Functional Analysis with applications", John Wiley, 1978. 7. V.K. Krishan, "Textbook of Functional analysis: A Problem-oriented Approach", Prentice Hall of india, 2004.
Course Outcomes	On completion of the course, students should be able to CO1: understand the concept of Normed Spaces CO2: apply the idea of linear operators and compact operators CO3: evaluate Ortho normal basis CO4:.demonstrate spectral theory

CO/PO	РО								PSO			
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	S	S	М	S	S	М	S	М	М	S
CO2	S	S	S	S	М	S	S	М	S	М	М	S
CO3	S	S	S	S	М	S	S	М	S	М	М	S
CO4	S	S	S	S	М	S	S	М	S	М	М	S

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code & Title	19PM417: Stochastic Processes							
Class	M.sc-Mathematics	Semester	IV					
Cognitive Level	 K1 – Acquire/Remember K2 – Understand K3 – Apply K4 – Evaluate K5 – Analyze 							
Course Objectives	 The Course aims to learn the concepts of stochastic process with discrete state space stochastic process in queuing an 	, renewal processes a						
Employability and Skill Development	National need	National need Participative learning a solving						
UNIT	Content	Content						
I	Stochastic Processes: Some notions – Sp Stochastic processes – Stationary proces – Definitions and examples – Higher Tra Generalization of Independent Bernoulli chain – Dependent trains.							
Π	Markov chains: Classification of states a Determination of Higher transition proba Markov system – Reducible chains – Ma continuous state space.	a 12						
III	Markov processes with Discrete state spa processes and their extensions – Poisson distribution – Generalization of Poisson Death process – Markov processes with (continuous time Markov Chains).	13						
IV	Renewal processes and theory : Renewal processes in continuous time – Renewal time – Wald's equation – Renewal theory	12						
V	Stochastic processes in Queuing – Queui concepts – the queuing model M/M/1 – S – transient behaviour of M/M/1 Model – models - the model GI/M/1.							
Reference	Text Book: J. Medhi, Stochastic Processes, Wiley Ea UNIT- I: Ch 2 (§2.1-2.3) & Ch 3 (§3.1-2) UNIT-II : Ch 3 (§3.4-3.6, 3.8, 3.9) UNIT-III: Ch4 (§4.1-4.5) UNIT- IV: Ch 6 (§6.1-6.5) UNIT-V: Ch 10 (§10.1-10.3, 10.7, 10.8)	3.3)	0.23, 10.7.2.1,					

	 10.7.3.2, 10.7.3.4, 10.8.2)) Reference Books: Samuel Karlin, Howard M. Taylor, A first course in stochastic processes, 2nd edition, Academic Press, 1975. Narayan Bhat , Elements of Applied Stochastic Processes, 2nd edn, John Wiley,1984. S.K. Srinivasan and K.Mehata, Stochastic Processes, Tata McGraw Hill, 1976. N.U. Prabhu, Stochastic Processes. Macmillan, 1965.
Course Outcomes	 On completion of the course, students should be able to CO1: understand the concept of various specifications of Stochastic Processes. CO2: apply the idea of Markov chain and Markov Processes to real life problems. CO3: demonstrate on renewal equation, stopping time and renewal theorem. CO4:apply the idea of queuing model to real life problems .

CO/PO	РО							-	PSO	-		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	S	S	М	S	S	S	М	S	М	S
CO2	S	S	S	S	М	S	S	S	S	S	S	S
CO3	S	S	S	S	М	S	S	S	S	S	S	S
CO4	S	S	S	S	М	S	S	S	S	S	S	S

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

CORE ELECTIVE COURSE (CEC)

Course Code & Title	19PM314a: Fuzzy Mathematics								
Class	M.Sc Mathematics	Semester	III						
Cognitive Level	K-1Acquire/RememberK-2UnderstandK-3ApplyK-4EvaluateK-5Analyze								
Course Objectives	 The Course aims to help the student to gain the knowledge of the basics of fuzzy set theory, operations on fuzzy sets, fuzzy numbers, fuzzy relation, fuzzy graphs and fuzzy logic. 								
Employability and Skill Development	Global need	ning and Problem							
UNIT	Content	No. of Hours							
I	Fuzzy set theory: Fuzzy set, Type of definitions and properties of Fuzzy set Solved examples.								
II	Operations on fuzzy sets: Introduction, S theorems, Extension Principle for Fuzzy Complements-Some important theorems.	15							
III	Fuzzy numbers: Algebraic operations with Binary operation of two Fuzzy numbers, for L.R representation of Fuzzy sets, Fuz equations.	ons							
IV	Fuzzy relations and fuzzy graphs: Genera Projections and Cylindrical Fuzzy relatio Properties of Min-Max composition, Bir single set, Solved examples, Compatibil graph, Fuzzy morphisms, Fuzzy relation	у							
V	Fuzzy logic: An overview of classical log Types of sentences, Truth values and Tru Algebra of Statements, Validity of Argur	15 gy,							

	identities of Crisp logic ,Well formed formulas Predicates and Quantifiers ,Quantifiers and logical operators ,Normal form, Fuzzy logic ,Fuzzy Connectives ,Fuzzy inference.						
	Text Book:						
Reference	Sudhir K.Pundir,Rimple Pandir, Fuzzy Sets and their Application, Pragati Prakashan,2008						
	UNIT- I: Ch 1 (§1.16-1.19) UNIT-II: Ch 2 (§2.1-2.5) UNIT- III: Ch 3 (§3.2-3.4,3.6-3.9) UNIT-IV: Ch 4 (§4.1-4.6,4.8,4.9) UNIT-V: Ch 7 (§7.1-7.15)						
	Reference Book:						
	H.J.Zimmermann, Fuzzy set Theory and its Applications, Allied Publishers						
	Ltd,New Delhi,1991.						
Course Outcomes	 On completion of the course, students should be able to CO1: to know the basic Mathematical elements of the theory of fuzzy sets CO2: gain Knowledge about the fuzzy arithmetic and fuzzy number CO3: to understand the difference and similarities between fuzzy sets and classical set theories. CO4: apply the fuzzy logic in real life situation 						

CO/PO	РО								PSO			
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	М	S	М	М	S	М	S	М	М	М	М
CO2	S	М	S	М	М	S	М	S	М	М	М	М
CO3	S	М	S	М	М	S	М	S	М	М	М	М
CO4	S	М	S	М	М	S	М	S	S	S	S	М

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code & Title	19PM314b :	Number Theory					
a Thie	1961/13140.						
Class	M.Sc Mathematics	Semester	III				
Cognitive Level	K-1Acquire/Remember $K-2$ Understand $K-3$ Apply $K-4$ Evaluate $K-5$ Analyze						
Course Objectives	 The Course aims to learn the concepts of divisibili quadratic forms,some function equations. 						
Employability and Skill Development	Global need	and Problem					
UNIT	Content	No. of Hours					
I	Divisibility:Introduction-Divisibility-Primes-The Bionomical 15 Theorem.						
П	Congruence-Solutions of Congruence-T Theorem-Techniques of Numerical Ca Module-Primitive roots and Power Resid	15					
III	Quadratic Reciprocity and Quadratic Residues- Quadratic Reciprocity-The Quadratic Forms.	15					
IV	Some Function of Number Theory: Gre Arithmetic Functions –The Mobius Recurrence Functions.	15					
V	Some Diophantine Equations: The E Simultaneous Linear Equations-Pyt Assorted Examples.	15					
Reference	Text Books: Ivan Nivan, Herbert S.Zuckerman and I the theory of Numbers, Fifth edition., Joh UNIT-I : Ch 1 UNIT-II : Ch 2 (§2.1-2.4, 2.6 &2.8) UNIT-III : Ch 3(§3.1-3.4) UNIT-IV : Ch 4(§4.1-4.4) UNIT-V : Ch 5(§5.1-5.4)	e e .					

	Reference Books:
	 David M.Burton, Elementary of Number theory, W.M.C Brown Publishers, Dubuque, Lawa, 1989. William.J.Leveque, Fudamentals of Number theory, Addison-Wesley Publishing Company, Phillipines, 1977. Tom.M.Apostal-Introduction to Analytic Number theory, Narosa, New Delhi.
Course Outcomes	 On completion of the course, students should be able to CO1: attain a broad understanding of divisibility, congruence, greatest common divisor, least common multiple and factoring. CO2: understand certain number theoretic functions and their properties. CO3: apply the law of Quadratic Reciprocity and other methods to classify numbers as primitive roots, quadratic residues and quadratic non-residue. CO4: acquire the mathematical skills required to solve the system of Diophantine equation using Chinese Reminder theorem and Euclidean algorithm.

CO/PO	РО							-	PSO	-		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	S	М	М	М	М	S	М	М	М	S
CO2	S	S	S	М	М	S	М	S	М	М	М	S
CO3	S	S	S	М	М	S	М	S	М	М	М	S
CO4	S	S	S	М	М	S	М	S	S	М	S	S

-

-

-

Strongly Correlating(S) Moderately Correlating (M) Weakly Correlating (W) No Correlation (N)

2 marks 1 mark

0 mark

Course Code & Title	19PM315a: Graph Theory							
Class	M.sc-Mathematics	Semester	III					
Cognitive Level	 K1 – Acquire/Remember K2 – Understand K3 – Apply K4 – Evaluate K5 – Analyze 							
Course Objectives	 The Course aims to provide the basic concepts of graphs, matching, vertex coloring 							
Skill Development	Global need	Participative learning	ng and Problem					
UNIT	Content		No. of Hours					
Ι	Graphs and simple graphs – Graph isom Incidence and adjacency Matrices – Sub Degrees – Path and Connection – Cycles and Bonds – Cut Vertices	s 15						
II	Connectivity – Blocks - Euler tours – Ha	15						
III	Matchings: Matchings and Coverings in Edge Chromatic Number – Vizing's The	15						
IV	Independent sets – Ramsey's Theorem – Brook's Theorem – Chromatic Polynom	- 15						
V	Plane and planar Graphs – Dual graphs – The Five –colour Theorem and the Four-	15						
Reference	Text Book: J.A. Bondy and U.S.R. Murthy, Graph Theory and Applications, Macmillan London, 1976. UNIT- I: Ch 1 (§1.1 – 1.7) & Ch 2 (§2.1 – 2.3) UNIT-II: Ch 3 (§3.1& 3.2) & Ch 4 (§4.1 & 4.2) UNIT-III: Ch 5 (§5.1& 5.2) & Ch 6 (§6.1-& 6.2) UNIT-IV: Ch 7 (§7.1 & 7.2) & Ch 8 (§8.1, 8.2 & 8.4) UNIT- V : Ch 9 (§9.1 – 9.3 & 9.6) Reference Books: 1. Clark and D.A.Holton, a First look at Graph Theory, Allied Publishers,							
	 Clark and D.A.Holton, a First to New Delhi, 1995. R. Gould, Graph Theory, Benja 							

	 A. Gibbons, Algorithmic Graph Theory, Cambridge University Press, Cambridge, 1989. R.J. Wilson and Watkins, Graphs: An introductory Approach, John Wiley and Sons, New York, 1989. S.A. Choudum, a First Course in Graph Theory, MacMillan India Ltd. 1987.
Course Outcomes	 On completion of the course, students should be able to CO1: understand the definitions namely, cut vertex, bridge, blocks and automorphism group of a graph. CO2: study the properties of trees and connectivity. CO3: idetify Eulerian graphs and Hamiltonian graphs. CO4: understand the concepts planarity including Euler identity, matchings and colorings.

CO/PO	РО								PSO			
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	М	S	М	М	S	М	S	S	S	S	М
CO2	S	М	S	М	М	S	М	S	S	S	S	М
CO3	S	S	S	М	М	S	М	S	S	S	S	М
CO4	S	S	S	М	М	S	М	S	S	S	S	М

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code & Title	19PM315b: Numerical Analysis							
Class	M.Sc-Mathematics	Semester	III					
Cognitive Level	 K1 – Acquire/Remember K2 – Understand K3 – Apply K4 – Evaluate; K5 – Analyze 							
Course Objectives	 The Course aims to know the theory behind various apply these methods to solve mathematical solutions of the solution of the soluti							
Employability and Skill Development	Global need	ning and Problem						
UNIT	Content		No. of Hours					
Ι	Transcendental and Polynomial Equatio convergence – Iterative Methods – Poly Bridge – Vista method, Barstow's metho squaring method.	15						
II	System of linear algebraic equations and Problems: Error Analysis of direct and i Finding Eigen values and Eigen vectors methods.							
III	Interpolation and Approximation: Herm Piecewise and Splice Interpolation – Vie Approximation – least square approximation							
IV	Differentiation and Integration: Numeric optimum choice of step – length Extrapo Partial Differentiation – Methods based coefficients – Gauss Methods.	- 15						
V	Ordinary Differential Equations: Local t Euler, Backward Euler, Midpoint, Taylo second orders Runge – kutta method – s	15						
	Text Book:							
Reference	M. K. Jain, S. R. K. Iyengar and R. K. J Methods for Scientific and Engineering Edition, Wiley Easten Ltd, 1993.							
	UNIT-I: Ch2(§2.5-2.8) UNIT-II : Ch 3 (§3.1-3.5)							

	 UNIT-III: Ch 4 (§4.5-4.9) UNIT-IV: Ch 5 (§5.2-5.5 & 5.8) UNIT-V: Ch 6 (§6.2, 6.3 & 6.6 Reference Book : Kendall E. Atkinson, "An Introduction to Numerical Analysis", 2nd Edition, John Wiley & sons, 1998 M. K. Jain, "Numerical Solution of Differential Equations", 2nd Edition, NewAge Interanational Pvt 	
	Ltd, 1983 3. Samuel D.Conte, Carl De Boor, " Elementary Numerical Analysis", McGraw-Hill International Edition, 1983.	
Course Outcomes	 On completion of the course, students should be able to CO 1: obtain the solutions of transcendental and polynomial eq CO 2: apply direct methods and iteration methods for solving sequations. CO 3: apply Hermit interpolation, piecewise and spline interpol CO 4: solve problems using interpolation and ordinary different using numerical methods. 	system of blation.

CO/PO	РО							-	PSO	-		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	М	S	М	S	М	S	S	М	М	S	М
CO2	S	М	S	М	S	М	S	S	М	М	S	М
CO3	S	М	S	М	S	М	S	S	М	М	S	М
CO4	S	S	S	М	S	S	S	S	S	М	S	М

S
ks
k
k

Course Code &Title	19PM418a: Optimization Techniques								
Class	M.Sc Mathematics	Semester	IV						
Cognitive Level	 K1 – Acquire/Remember K2 – Understand K3 – Apply K4 – Evaluate K5 – Analyze 								
Course Objectives	 The Course aims to provide the knowledge of various optimization techniques like integer programming, dynamic programming, decision theory and games, inventory models, non-linear Programming algorithms 								
Employability and Skill Development	National need	ng and Problem							
UNIT	Content		No. of Hours						
I	Integer Programming	15							
II	Dynamics (Multistage) Programming	15							
III	Decision Theory and Games. 15								
IV	Inventory Models		15						
V	Non-Linear Programming algorithms		15						
	Text Book:								
Reference	 Hamdy A. Taha, Operations Research (4th End), McGraw Hill Publications, New Delhi.2002. UNIT-I: Ch 8 (§8.1-8.5) UNIT-II : Ch 9 (§9.1-9.5) UNIT-III : Ch 11(§11.1-11.4) UNIT-IV : Ch 13 (§13.1-13.4) UNIT-V : Ch 19(§19.1& 19.2) Reference Books: O.L. Mangesarian, Non Linear Programming, TMH, New Yark. Mokther S.Bazaraa and C.M. Shetty, Non Linear Programming, Theory and Algorithms, Willy, New Yark. Premkumar Gupta and D.S. Hira, Operations Research: An 								

	Introduction, S. Chand and Co., Ltd. New Delhi.								
	 S.S.Rao, Optimization theory and Applications, Wiley Eastern Ltd, New Delhi. 								
Course Outcomes	 On completion of the course, students should be able to CO1: understand the concept of integer programming and dynamic programming. CO2: analyse the problems based on decision theory and game theory. CO3: get optimize inventory models. CO4: evaluate non-linear programming problems. 								

CO/PO	РО					PSO						
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	М	S	М	М	S	S	S	М	S	S	М
CO2	S	М	S	М	М	S	S	S	М	S	S	М
CO3	S	М	S	М	М	S	S	S	М	S	S	М
CO4	S	М	S	М	М	S	S	S	S	S	S	М

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code & Title	19PM418b: Probability Theory	e of rev	vision : 100%	
Class	M.Sc Mathematics	IV		
Cognitive Level	 K1 – Acquire/Remember K2 – Understand K3 – Apply K4 – Evaluate K5 – Analyze 			
Course Objectives	 The Course aims to provide the knowledge of the Pro MGF, characteristics function, di 	-		
Employability and Skill Development	Global need	and Problem		
UNIT	Content	<u> </u>		No. of Hours
Ι	Random Events and Random Variable Probability axioms-Combinatorial for probability – Bayes Theorem – Indepe Variables – Distribution Function – Marginal Distribution –Conditional Distribution –Conditional Distribution france	15		
II	Parameters of the Distribution - Expectat Chebyshev Inequality - Absolute momer – Moments of random vectors – Regress second types.	15		
III	Characteristic functions - Properties of c – Characteristic functions and moments - characteristic function of the sum of the variables – Determination of distribution Characteristic function – Characteristic f multidimensional random vectors – Prob functions.	15		
IV	Some Probability distributions - One Binomial – Polya – Hypergeometric distributions – Uniform – normal gamma Laplace (continuous) distributions.	15		
V	Limit Theorems - Stochastic convergen large numbers Convergence of sequ functions – Levy-Cramer Theorems - Theorem – Poisson, Chebyshev, Khintch numbers – Lindberg Theorem – Lapun Cantelli Lemma - Kolmogorov Inequa Strong Law of large numbers.	15		

	Text Book: M. Fisz, Probability Theory and Mathematical Statistics, John Wiley and Sons, New York, 1963. UNIT-I: Ch 1 (§1.1 to 1.7), Ch 2 (§2.1 to 2.9) UNIT-II: Ch 3 (§3.1 to 3.8) UNIT-III: Ch 4 (§4.1 to 4.7) UNIT-IV: Ch 5 (§5.1 to 5.10) UNIT-V :Ch 6 (§6.1 to 6.4, 6.6 to 6.9 , 6.11 & 6.12)
Reference	Reference Books:
	 R.B. Ash, <i>Real Analysis and Probability</i>, Academic Press, New York, 1972 K.L.Chung, <i>A course in Probability</i>, Academic Press, New York, 1974. K.R. Parthasarathy, Introduction to Probability and measure, Texts and Readings in Mathematics 22, Hindustan Book Agency, 2002. R.Durrett, <i>Probability : Theory and Examples</i>, (2nd Edition) Duxbury Press, New York, 1996. V.K.Rohatgi <i>An Introduction to Probability Theory and Mathematical Statistics</i>, Wiley Eastern Ltd., New Delhi, 1988(3rd Print). P. Billingsley, Probability and Measure, John Wiley, 1985. B.R.Bhat , <i>Modern Probability Theory</i> (3rd Edition), New Age International (P)Ltd, New Delhi, 1999 J.P. Romano and A.F. Siegel, <i>Counter Examples in Probability and Statistics</i>, Wadsworth and Brooks / Cole Advanced Books and Software, California, 1968.
Course Outcomes	On completion of the course, students should be able to CO1: acquire the knowledge of random variables, distribution. CO2: understand the concept of expectation, characteristics function. CO3: demonstrate on Chebyshev inequality and various distributions CO4: apply limit theorems to analyze stochastic convergence.

CO/PO	РО							PSO				
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	S	М	М	М	S	S	М	М	М	М
CO2	S	S	S	М	М	М	S	S	S	М	М	М
CO3	S	S	S	М	М	S	S	S	М	S	S	М
CO4	S	S	S	М	S	S	S	S	S	М	М	М

Strongly Correlating(S)	-
Moderately Correlating (M)	-
Weakly Correlating (W)	-
No Correlation (N)	-

3 marks 2 marks

1 mark

- 0 mark

Course Code & Title	19PM419a - Coding Theory								
Class	M.Sc Mathematics	Semester	IV						
Cognitive Level	K-1Acquire/RememberK-2UnderstandK-3ApplyK-4EvaluateK-5Analyze								
Course Objectives	 The Course aims to provide the concept of linear Block Codes, Cyclic Codes, Rings and Polynomials, Cyclic Codes, Rings and Polynomials, Bounds on codes. 								
Employability	Global need	rning and Problem							
UNIT	Content	No. of Hours							
Ι	Linear Block Codes: Basic Definitions, T Description of Linear Block codes, thepa Dual Codes, Error Deletion and Correct Channels, Weight, Distributions of Codes	and							
II	Hamming Codes and their codes, Perform Modifications to Linear Codes, Best Know Codes	ides, 15							
III	Cyclic Codes, Rings and Polynomials: Definitions, Rings, Quotient Rings, Ideal Description of Cyclic Codes, Nonsyste Parity Check, Systematic Coding.	braic							
IV	Some Hardware Background, Cyclic Enco Decoding.	15							
V	Bounds on codes: The Gilbert – Vars Poltkin Bound, The Griesmer Bo Programming and Related Bound, the R Rumsey-Welsch Bound.	ound, The L	inear						

· · · · · · · · · · · · · · · · · · ·							
	Text Books:						
	Toddk.Moon, Error Correction Coding Mathematical Methods and Algorithms,						
	Wiley Interscience & John Wiley & Sons, INC., publications, 2005						
	UNIT-I : Ch $3(3.1-3.4)$						
	UNIT-II: Ch 3 (3.5-3.10),						
	UNIT-III: Ch 4 (4.1-4.8)						
	UNIT-IV: Ch 4(4.9-4.11)						
	UNIT-V: Ch 9 (9.1-9.5).						
	Reference Books:						
Reference							
	1. S.J.Macwilliams and N.J.A. Slone, The theory of Error-Correcting						
	Code, Amster Bam, North Holland, 1977.						
	2. Raymond Hill, A First Course in Coding Theory, Clarendon Press,						
	Oxford, 1986.						
	On completion of the course, students should be able to						
	CO1: apply linear block codes for error deduction and correction						
	CO2: understand the importance in the design of codes.						
Course	CO3: apply the tools of linear algebra to construct special type of codes.						
Outcomes	CO4: use algebraic techniques in designing coefficient and reliable data						
	transmission methods.						

CO/PO				РО			1			PSO		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	М	S	М	S	S	W	S	М	W	М	М
CO2	S	М	S	М	S	S	W	S	М	W	М	М
CO3	S	М	S	М	S	S	W	S	S	М	S	М
CO4	S	S	S	М	S	S	W	S	M	М	S	М

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

Course Code & Title	19PM419b: Fluid Dynamics							
Class	M.Sc Mathematics	Semester	IV					
Cognitive Level	 K – 1 Acquire/Remember K – 2 Understand K – 3 Apply K - 4 Evaluate K - 5 Analyze 							
Course Objectives	 The Course aims to give the students an introduction to give the students a feel of the apparalysis of flow of fluids. 	plications of complex	analysis in the					
Employability	Global need	Participative learning solving	and Problem					
UNIT	Content		No. of Hours					
I	Kinematics of Fluids in Motion: Real Flu Velocity of a fluid at a point – Streamlin Steady and Unsteady flows – The Veloci vorticity vector – Local and Particle rates equation of continuity – Worked Exampl fluid.							
II	Equations of Motion of a Fluid: Pressure rest – Pressure at a point is a moving flui of motion – Bernoulli's equation - Discu steady motion under Conservative Body Potential theorems – Impulsive motion.	15						
III	Some Three-dimensional Flows: Sources Images in rigid infinite plane – mage Axisymmetric flour; Stoke's stream func	- 15						
IV	Some Two-dimensional Flows: The Stream function – The complex potential for two dimensional, irrotational, incompressible flow – Complex velocity potentials for standard two dimensional flows – some worked examples – Two dimensional image systems – The Milne Thomson circle theorem – The theorem of Blasis.15							
V	Viscous Flow: Stress components in a Real Fluid – Relations15between Cartesian components of stress - Translational15Motion of Fluid element – The Rate of Strain Quadric and16Principal Stresses – Some Further properties of the Rate of17Strain Quadric - Stress Analysis in Fluid Motion – Relations15							

viscosity and Laminar Flow – The Navier – Stokes Equations									
viscosity and Laminar Flow – The Navier – Stokes Equations of Motion of a viscous Fluid-Some solvable problems in Viscous flow									
 Text Books: F. Chorlton, Text Book of Fluid Dynamics, CBS Publishers & Distributors, Delhi 1985. UNIT-I: Ch 2 (§2.1 – 2.9) UNIT-I: Ch 3 (§3.1, 3.2, 3.4 – 3.8 & 3.11) UNIT-II: Ch 4 (§4.2 – 4.5), UNIT-IV: Ch 5 (§5.1 – 5.9) UNIT-V: Ch 8 (§8.1 – 8.10) Reference Books: H. Schlichting, Boundary Layer Theory, Me Grow Hill Co, New York, 1979. R.K. Rathy, An Introduction to Fluid Dynamics, Oxford and IBH Pub. Co., New Delhi, 1976. William F. Hughes and John A. Brighton, Fluid Dynamics (Schaum's Outlines), 2nd Ed., TMH, 1967. J.D. Anderson, Computational Fluid Dynamics, the Basics with Applications, TMH, 1995. A.J. Chorin and A. Marsden, A Mathematical Introduction to Fluid Dynamics, Springer verlag, New Delhi, 1993 									
 On completion of the course, students should be able to CO1: understand the behavior of fluids in motion. CO2: understand the potential theorems of fluid flow CO3: apply the concept of complex analysis in the analysis of the flow of liquids. CO4: analyze the concept of sources, sinks & doublets and two dimensional flows. 									

CO/PO				PO						PSO		
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	М	S	М	S	М	М	S	М	М	S	М
CO2	S	М	S	М	S	М	М	S	М	М	S	М
CO3	S	S	S	М	S	S	М	S	М	М	S	М
CO4	S	М	S	М	S	S	М	S	М	М	S	М

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark

OPEN ELECTIVE COURSE

Course Code & Title	19PM210a:OEC-1Mathematica	al Modeling And	d Simu	lation
Class	Open to all(except Maths Major)	Ш		
Cognitive Level	K-1Acquire/RememberK-2UnderstandK-3ApplyK-4EvaluateK-5Analyze			
Course Objectives	The Course aims to • learn the concepts of mat	hematical mode	eling ar	d simulation
Employability		Participative lea solving	rning a	nd Problem
UNIT	Content			No. of Hours
Ι	Statistical Models in Simulation: Review of And Concepts – Useful Statistical Model – Distributions – Continuous Distributions – Empirical Distributions.	15		
II	Queueing Models: Characteristics of Queueing Notations – Transient and Stea of Infinite –.Long – Run Measures Queueing Systems.	viour	15	
III	Queueing Models: Steady –State Beh populations Markovian Models –Steady Finite Population Models (M/M/C/K/K) -	State Behavio	ur of	15
IV	Random –Number Generation: Prop Numbers – Generation of Pseudo - T Techniques for Generating random Nu random Numbers.	ers –	15	
V	Random – Variate Generation: Inverse Tra Direct Transformation for the norr Convolution Method Acceptance Reje Technique	nal distributio	on –	15
	Text Books: Jerry Banks, John S.Carson, Barry l.Nelso	n, Discrete – E	vent sy	stem Simulation,

Reference	Second edition, Prentice – Hall of India, 1998.
	UNIT-I: Ch 6 UNIT-II: Ch 7(§7.1-7.4) UNIT-III: Ch 7(§7.5-7.7) UNIT-IV : Ch 8 UNIT-V: Ch 9
	 Reference Books: Geoffrey Gordon, System Simulation, Second edition, Prentice Hall of India, New Delhi, 1995.
Course Outcomes	On completion of the course, students should be able to do CO 1: acquire the role of discrete and continuous distributions in simulation CO 2:understand the steady state behavior of queuing models CO 3: evaluate the performance measures of queuing system CO 4: demonstrate on random number and variate generation

CO/PO	РО							PSO				
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	W	W	S	W	S	М	М	М	М	S
CO2	S	S	W	W	S	W	S	М	М	М	М	S
CO3	S	М	W	W	S	W	S	М	М	М	М	S
CO4	S	М	W	W	S	W	S	М	S	М	S	S

Strongly Correlating(S) Moderately Correlating (M) Weakly Correlating (W) No Correlation (N)

3 marks 2 marks 1 mark

-

0 mark

Course Code & Title	19PM210b:OE	C-2 Statistics						
Class	Open to all(except Maths Major)	Semester	Π					
Cognitive Level	K-1Acquire/RememberK-2UnderstandK-3ApplyK-4EvaluateK-5Analyze							
Course Objectives	 The Course aims to gain the knowledge of data collection and classification , measures of dispersion, correlation and regression test the data for goodness of fit analyze data using chi square statics 							
Employability	Local need	ing and Problem						
UNIT	Content	No. of Hours						
Ι	Collection, Classification and Tabulatio and Diagrammatic Representation of Da Diagram, Histogram, Frequency Polygon Gives- Measures of Central Tendency Mode in Series of Individual Obser Continuous Series, More than Frequency, Mid value and Open End Class.	Pie and and and						
Π	Measures of Dispersion- Range, Quartile Deviation about an average, Standard De Coefficient of Variation for Individual, D Continuous type data.	15						
III	Correlation-Different types of Correlation Simple, Multiple, Linear and Non Linear of Correlation- Karl Pearson's and Spe Concurrent Deviation Method.	ods						
IV	Regression Types and Method of Analy Regression Equations, Derivation taken f of X and Y, Derivation taken from Assum Multiply Regression Coefficients- Applic	ean						

V	Chi-Square tests for Variance, Goodness of fit (Expected 15 frequencies are equal or in a specified proportion only) and independence of attributes F test for equality of two Variances, Analysis of Variance- One way, Two Way and Latin Square design.					
Reference	 Text Books: S.C.Gupta and V.K.Kapoor, Fundamentals of Statistics, Sultan Chand and Sons New Delhi 1994. S.C.Gupta, Fundamentals of Statistics, 6th Revised and Enlarged Edition, Himalaya Publishing House. UNIT-I : Ch4(§4.1-4.4), Ch 5(§5.1-5.8) of (1) UNIT-II : Ch6(§6.4-6.9,6.12)of(1) UNIT-III : Ch6(§8.1-8.4,8.7,8.8) of (1) UNIT-IV : Ch 9(§9.1-9.4) of (1) UNIT-V : Ch18(§18.1,18.2,18.4-18.6) of (2) 					
	 Reference Books: 1. J.E. Freund, Mathematical Statistics, Prentice Hall of India. 2. A.M. Goon, M.K. Gupta, B.Dos Gupta, Fundamentals of Statistical, Vol – I, World Press, Calcutta, 1991. 					
Course Outcomes	On completion of the course, students should be able to CO 1: represent data diagrammatically CO 2: evaluate measures of dispersion CO 3: apply correlation and regression analysis CO 4: demonstrate on analysis of variance					

CO/PO	РО						PSO					
	1	2	3	4	5	6	7	1	2	3	4	5
CO1	S	S	S	М	S	М	S	М	М	М	М	S
CO2	S	S	S	М	S	М	S	М	М	М	М	S
CO3	S	М	S	М	S	М	S	М	М	М	М	S
CO4	S	М	S	Μ	S	Μ	S	М	S	Μ	S	S

Strongly Correlating(S)	-	3 marks
Moderately Correlating (M)	-	2 marks
Weakly Correlating (W)	-	1 mark
No Correlation (N)	-	0 mark